Example A5:

How Many Breeding Females are Needed to Produce 40 Male Homozygotes per Week Using a Heterozygous Female x Heterozygous Male Breeding Scheme With 15% Non-Productive Breeders?

Strain characteristics

١	Breeding scheme	Heterozygote x heterozygote
١	Breeding lifespan	32 weeks
١	Number of Litters Produced	4 litters
١	Litter frequency	1 litter/8 weeks
	Percent Non-productive breeders	15%
١	Litter size	6 pups (3 females, 3 males)
١	Offspring Genotypes	25% Homozygotes, 50% Heterozygotes, 25% Wild-type
١	Percent Useful Offspring	0.25 homozygotes x 0.50 males x .85
		productive breeders = $\sim .1$

Number of experimental mice needed

	,	
1.	Number of mice needed	40
2.	Age requirements If must be same age, enter 1	
	If can have a 2-week age range (e.g., 5-6 weeks old), enter 2 If can have a 4-week age range (e.g., 5-8 weeks old), enter 4	1
3.	Frequency with which mice are needed If weekly, enter 1 If every other week, enter 2 If once a month, enter 4	1
4.	Divide Line 3 by Line 2 (round to nearest whole number)	1
5.	Sexes needed If both sexes needed, enter 1 If one sex needed, enter 2	1
6.	Breeding scheme If homozygote x homozygote, enter 1 If heterozygote x homozygote, enter 2 If heterozygote x heterozygote, enter 4	4
7.	Some surplus (insurance) mice desired If no, enter 1 If yes, enter a "fudge factor" to ensure overproduction (e.g., if 10% more mice are desired, enter 1.1)	1,1
8.	Number of mice to be produced weekly	111
	Multiply Lines 1 x 4 x 5 x 6 x 7 (round to nearest whole number)	352

Colony productivity

, ,	,	
9.	Average number of pups weaned per litter	6
10.	Average number of litters produced per breeder female	
	Because 15% of the breeders are non-productive, multiply the litters per productive	
	female by 0.85.	3.4
11.	Average productive female's breeding lifespan (weeks)	32
12.	Calculate colony productivity	
	Divide Line 10 by Line 11, multiply by Line 9 (round to nearest hundredth)	0.64
13.	Calculate number of breeding females needed	
	Divide Line 8 by Line 12 (round to nearest whole number)	550

Number of breeding females needed to keep colony productive

14.	Calculate number of replacement breeders needed per week	
	Divide Line 13 by Line 11 (round up to nearest whole number)	18
15.	Calculate the number of additional breeders needed to provide replacement breeders	
	Divide Line 14 by Line 12 (round up to nearest whole number)	28

Total number of breeders needed

16. Add Line 13 and Line 15

Note: Approximately 176 heterozygous females and males per week not used for experiments but useful for breeding will be produced. Therefore, breeding colony size need not be adjusted/increased to produce replacement breeders.

Number of cages needed per week

17. Breeding cages

For pair breeding (one breeding female per cage): – **32 cages needed** or trio breeding (two breeding females per cage): –**16 cages needed**

18. Weaning cages

~11 females & ~11 males weaned per week will require ~ 6 cages (5 animals per cage separated by sex)

578